Abstract

The paper discusses some models of hydrogen-stress cracking of metals and alloys. These models are based on hydrogen-dislocation interaction. It is shown that the critical role of dislocation emissions in AIDE mechanism is, in its turn, similar to HELP except for a higher localization of deformations compared with microvoids coalescence that is related with HELP, because that stresses needed for the dislocation propagation are high enough to boost general dislocation activity in deformation zones in front of cracks. This results in the formation of small voids on intersecting deformation bands. It has been observed that a crack is essentially growing due to the emission of dislocations. However the emission of dislocation towards the tip of a crack and the formation of voids in front of a crack contribute a lot to the process. Furthermore, the formation of voids in front of a crack makes for a short radius of the crack tip and low angles of the crack tip opening displacement The paper considers crack growing in inert media in plastic materials. Crack plastic growth takes place mainly due to dislocations that originate from the sources in the deformation zone in front of the crack tip and are propagating backwards along the crack tip plane with a small or zero emission of the dislocations that start from the crack tip. Small number of the dislocations that originate in the sources lying closest to the crack tip will intersect the tip of the crack precisely thus promoting the crack development while the majority of the dislocation will have either blunting effect or contribute to the deformation in front of the crack. Thus to cause a crack growth due to microvoid coalescence and deep cavities with shallow depressions therein on fracture surfaces there must be a large deformation in front of the crack. It is demonstrated that the cracking mechanism resulting from the AIDE mechanism will be either intergranular or transcrystalline depending on the location where the propagation of dislocations and formation of voids run mostly easily. In case of transcrystalline cracking alternative sliding motion along the planes on either side of the crack will tend to minimize the reverse stress caused by previously emitted dislocations. Then the macroscopic transcrystalline cracking plane will divide the angle between the slide planes and the crack front will be located on the intersection line of the crack planes and the slide planes. However, if there is a difference in the number of slides that occur on either crack side because of big differences in shear stresses on different slide planes, there will be deviations from the planes and directions with low refraction index. If the plane index is not low, there still can be deviations in the failure planes depending on the location of nucleus voids in front of the crack. A detailed description of the relationship between hydrogen effect on the behavior of dislocations and voids, sliding motion localization and hydrogen embrittlement is still lacking, moreover, it presents a serious problem that can be solved by describing the kinetics of hydrogen embrittlement process. Thanks to their sophisticated nature HELP and AIDE mechanisms can be embrittlement contributors both in cracking and in the formation of cavities due to ductile fracture.

Highlights

  • Механизмы водородного растрескивания металлов и сплавов, связанные с усилением дислокационной активности 33 орудий

  • The paper discusses some models of hydrogen-stress cracking of metals and alloys. These models are based on hydrogen-dislocation interaction

  • Tribotehnicheskie harakteristiki kompozicionnyh pokrytij s matricej iz poligeteroarilena PM-DADFJe i napolniteljami iz nanochastic dihal'kogenidov vol'frama pri trenii skol'zhenija v srede zhidkogo smazochnogo materiala / A.D. Breki, A.L. Didenko, V.V. Kudrjavcev, E.S. Vasil'eva, O.V. Tolochko, A.G. Kolmakov, Ju.A. Fadin, N.E. Starikov, A.E. Gvozdev, N.N. Sergeev, E.V. Ageev, D.A. Provotorov // Izvestija Jugo-Zapadnogo gosudarstvennogo universiteta

Read more

Summary

Пластическая зона без водорода

Для AIDE-механизма, термин «эмиссия дислокаций» включает в себя как зарождение, так и последующее движение дислокаций от вершины трещины, и это важно отметить, в связи с тем, что стадия зарождения, имеет решающее значение и способствует адсорбции. Определяющая роль эмиссии дислокаций в AIDE-механизме, в свою очередь, подобна HELP, за исключением того, что деформации могут быть еще более локализованными, чем для коалесценции микропустот, связанной с HELP, так как напряжения, необходимые для распространения дислокаций, достаточно высоки для повышения общей дислокационной активности в пластической зоне перед трещинами. Для AIDE-механизма не является обязательным условием совместное движение водородных атмосфер и дислокаций, как это было в случае с HELP-механизмом [5, 56]. Вакансионные эффекты, вероятно, играют лишь второстепенную роль, хотя было несколько радикальных предположений, что может быть водородное охрупчивание в первую очередь является результатом высокой концентрации вакансий впереди трещин, за счет вызванного водородом уменьшения энергии вакансионного образования, а не отдельными эффектами водорода [22].

Список литературы
DISLOCATION INDUCED MECHANISMS OF HYDROGENE EMBRITTLEMENT OF METALS AND ALLOYES
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.