Abstract
The influence of boron-induced dislocation loops on the luminescence efficiency of silicon-based light-emitting diodes is investigated. Luminescence measurements and transmission-electron-microscopy images from devices fabricated by boron implantation into crystalline silicon, and subsequently processed under different conditions to form dislocation loops of different size and densities, were compared. Light emitting devices were also fabricated in an otherwise identical but a pre-amorphized substrate, to prevent boron-induced loop formation. The results demonstrate a strong correlation between the dislocation loop density and areal coverage, and the light emission efficiency. The devices produced in the pre-amorphized substrate, without dislocation loops, show strongly quenched light emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.