Abstract

Based on the results of Shiue and Lee [J. Appl. Phys. 70, 2947 (1991)], the effect of plastic zone and grain boundary on the dislocation emission criterion was investigated. The emission criterion is based on the concept of spontaneous emission. The critical stress intensity factor for dislocation emission increases with the increasing size of dislocation-free zone and the number of piled-up dislocations in the plastic zone, but decreases with increasing grain size. The ductile versus brittle behavior of material was determined by the competition of critical stress intensity factors for dislocation emission and crack propagation. A material with larger grain size is easier to emit dislocation and allows more dislocations to be piled up, so that it behaves more ductile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.