Abstract

Dislocation Dynamics (DD) simulations are used to study the evolution of a pre-specified dislocation structure under applied stresses and imposed boundary conditions. These simulations can handle realistic dislocation densities ranging from 1010to 1014m-2, and hence can be used to model plastic deformation and strain hardening in metals. In this paper we introduce the basic concepts of DD simulations and then present results from simulations in thin copper films and in bulk zirconium. In both cases, the effect of orientation on deformation behaviour is investigated. For the thin film simulations, rigid boundary conditions are used at film-substrate and film-passivation interfaces leading to dislocation accumulation, while periodic boundaries are used for bulk grains of Zr. We show that there is a clear correlation between strain hardening rate and the rate of increase of dislocation density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.