Abstract
We study a mathematical model describing dislocation dynamics in crystals. We consider a single dislocation line moving in its slip plane. The normal velocity is given by the Peach-Koehler force created by the dislocation line itself. The mathematical model is an eikonal equation with a velocity which is a non-local quantity depending on the whole shape of the dislocation line. We study the special case where the dislocation line is assumed to be a graph or a closed loop. In the framework of discontinuous viscosity solutions for Hamilton–Jacobi equations, we prove the existence and uniqueness of a solution for small time. We also give physical explanations and a formal derivation of the mathematical model. Finally, we present numerical results based on a level-sets formulation of the problem. These results illustrate in particular the fact that there is no general inclusion principle for this model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.