Abstract
Dislocation distribution functions of mode I dynamic crack subjected to two loads were studied by the methods of the theory of complex variable functions. By this way, the problems researched can be translated into Riemann-Hilbert problems and Keldysh-Sedov mixed boundary value problems. Analytical solutions of stresses, displacements and dynamic stress intensity factors were obtained by the measures of self-similar functions and corresponding differential and integral operation. The analytical solutions attained relate to the crack propagation velocity and time, but the solutions have nothing to the other parameters. In terms of the relationship between dislocation distribution functions and displacements, analytical solutions of dislocation distribution functions were gained, and variation rules of dislocation distribution functions were depicted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.