Abstract

Abstract Uniaxial creep tests were performed on Zircaloy-4 sheet in the temperature range of 500–600 °C at high stresses (>10−3E), to uncover the rate-controlling mechanism. A stress exponent of 9.3–11 and a stress-dependent activation energy in the range of 220–242 kJ/mol were obtained from the steady state creep data. TEM analyses revealed an extensive presence of hexagonal screw dislocation network on the basal planes indicating recovery of screw dislocations by cross-slip to be the dominant mechanism. The creep data was therefore analyzed in the light of Friedel׳s cross slip model for HCP metals according to which the stress-dependency of the activation energy determined from the creep data was written in the form, U = ( 150 ± 4 ) + ( 2236 ± 124 τ ) kJ / mol The constriction energy of screw dislocations of 150 kJ/mol is in agreement with the values reported in the literature for zirconium and other HCP metals. Further analysis of the yield strength and the activation volume data obtained from stress relaxation tests in the temperature range 500–600 °C favors cross-slip of screw dislocations as the rate controlling mechanism over the test conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.