Abstract

A series of atomistic calculations is performed in order to explore dislocation core-core interactions and the Peierls stress in a model hexagonal lattice. The method of calculation is the lattice Green's function method, using several pair potentials with variable parameters. We confirm that dislocation cores broaden as a pair of dislocations with opposite sign move closer to each other. Continuum theories are surprisingly accurate in describing the dislocation-dislocation interaction force even in the range of strong core-core overlap. However, our atomistic calculations show that while the relation between the Peierls stress and dislocation width is exponential as the Peierls-Nabarro model predicts, that model underestimates the Peierls stress by nearly a factor of ${10}^{4}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.