Abstract

Dislocation configurations in two single-crystal superalloys during high-temperature low-stress creep (1100°C, 137 MP) were illustrated schematically with the use of transmission electron microscope (TEM). For an alloy with a small lattice misfit, the dislocations move in the combination of climbing and gliding processes. In the primary stage, the dislocations first move by slip in the g-matrix channels. When they reach the g¢ cuboids, they move by climb along the g¢ cuboid surfaces. In the secondary creep stage, dislocation reorientation in the (001) interfacial planes happens slowly, deviating from the deposition orientation of <110> to the misfit orientation of <100>. For an alloy with a large lattice misfit, the dislocations are able to move smoothly by cross slip in the horizontal g channels. The dislocation reorientation from the deposition orientation of <110> to the misfit orientation of <100> in the (001) interfacial planes can be completed in the primary creep stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call