Abstract

The characteristics of microstructural evolution along the transverse axis of the 1/3 position of turbine blade body have been investigated with the help of transmission electron microscopy. Dislocation configurations change with the evolution of local stress from the leading edge to the trailing edge: slip bands → dislocations → only γ/γ′ structure → dislocations → slip bands. The formation mechanism of slip bands illustrates that dislocations are generated in pairs and glide on the same plane continuously. Finite element analysis is made to assess the stress distribution along the transverse axis of turbine blade body. The instantaneous and inhomogeneous stress at the leading and trailing edges of blade body becomes the driving force for the formation of slip bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.