Abstract
Second harmonic generation (SHG) intensity, Raman scattering stress, photoluminescence and reflected interference pattern are used to determine the distributions of threading dislocations (TDs) and horizontal dislocations (HDs) in the c-plane GaN epitaxial layers on 6 inch Si wafer which is a structure of high electron mobility transistor (HEMT). The Raman scattering spectra show that the TD and HD result in the tensile stress and compressive stress in the GaN epitaxial layers, respectively. Besides, the SHG intensity is confirmed that to be proportional to the stress value of GaN epitaxial layers, which explains the spatial distribution of SHG intensity for the first time. It is noted that the dislocation-mediated SHG intensity mapping image of the GaN epitaxial layers on 6 inch Si wafer can be obtained within 2 h, which can be used in the optimization of high-performance GaN based HEMTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.