Abstract

The growth of a short edge crack, located within one grain in a bcc crystal and subjected to cyclic loading, is modelled using a dislocation formulation. The external boundary including the crack itself is built from dislocation dipole elements and the plasticity is represented by discrete dislocations moving along preferred slip planes. The crack propagates by single shear due to emission and annihilation of dislocations, leading to a zigzag shaped crack path. The method allows simulation of the crack growth path, crack shape and the development of the plastic zone in detail. It is shown that the grain orientation, orientation of the activated slip systems, the load and the initial crack configuration all together determines the exact path.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.