Abstract
In this work, a dislocation-based crystal plasticity finite element (CPFE) framework was implemented to investigate the effects of loading conditions on dwell-fatigue crack initiation life. Experimentally, a large number of strain-controlled dwell-fatigue tests were carried out at 650 °C in a nickel-based superalloy. The combinations of CPFE simulations and post-test examinations were used to reveal the dwell-fatigue crack initiation mechanisms. Then, a life prediction approach was presented on the basis of accumulated energy dissipation at half-life cycle. Good agreement between the experimental and simulated lives verifies the robustness as well as the accuracy of the present approach. Finally, a new three-dimensional (3-D) damage tolerance diagram was proposed by introducing a CP-based physical parameter to describe the degradation levels and evaluate the residual dwell-fatigue life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.