Abstract

Defects play a key role in deciding the mechanisms and kinetics of phase transformations. In this paper, we show how dislocations influence phase separation in alloys with miscibility gap. Specifically, depending on the ratio of pipe mobility to bulk mobility, it is seen that even in a system with nominal compositions outside the spinodal limit, spinodal phase separation is possible. Surprisingly, phase separation through both nucleation and growth, and spinodal decomposition, is seen concurrently (for the case of intersecting dislocations). Finally, the prominent role played by dislocations in influencing the morphology of precipitates is explored. We show that these results agree qualitatively with recent experimental results in iron based systems obtained using Atom Probe Tomography (APT).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.