Abstract

Nanoporous GaN template has been fabricated by electrochemical etching to give hexagonal pits with nanoscale pores of size 20–50nm in the underlying grains. The effect of GaN buffer layer grown at various temperatures from 650to1015°C on these as-fabricated nanopores templates is investigated by transmission electron microscopy. The buffer layer grown at the optimized temperature of 850°C partially fill up the pores and voids with annihilation of threading dislocations, serving as an excellent template for high-quality GaN growth. This phenomenon is, however, not observed for the samples grown with other temperature buffer layers. Micro-Raman measurements show significant strain relaxation and improvement in the crystal quality of the overgrown GaN layer on nanoporous GaN template as compared to overgrown on conventional GaN template.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call