Abstract

Tensile creep tests were combined with detailed transmission electron microscopy in order to characterize the dislocation movements during creep and to explain the creep properties of the Mg–Al–Ca AX52 die-cast alloy at 473 K and stresses from 15 to 70 MPa. TEM observations indicate that dislocations are generated within the primary α-Mg grain in the die-casting process, which consist of both the basal and non-basal segments. The basal segments of dislocations are able to bow out and glide on the basal planes under the influence of a stress, and the jogs follow the basal segments with the help of climb during creep. The creep mechanism for the alloy is deduced as dislocation climb due to the formation of sub-boundaries during creep, while the easy glide of the basal segments of dislocations is controlling the creep rates immediately after the stress application of creep tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call