Abstract

To investigate the effect of external loads arising from differential thermal expansion between a substrate and a surface mount component, specimens with a simulated surface mount component (nickel) on a copper substrate having a 1 mm2 joint area and solder thickness of about 100 µm were prepared to induce extrinsic shear in joints undergoing thermomechanical fatigue (TMF) cycling. The specimens were fabricated stress free and later clamped to a copper block to cause a significant reversal in sign of the shear imposed on the solder joint during TMF cycling for 20 minutes at 150°C and 3.5 hr at -15°C. The evolution of surface damage and microstructure was examined using SEM and Orientation Imaging Microscopy (OIM). The joints were almost single crystals. However, the orientations of the tin in each joint is different, leading to different resolved stresses on a given slip system. The joint with the largest resolved shear aligned with the crystal caxis showed the most damage. Low angle tilt boundaries developed, and sliding was observed on boundaries near 7 and 14° that have a coincident site lattice. Schmid factor analysis was carried out in regions that showed ledges or grain boundary sliding. Slip on (110) planes correlated well with some of the ledges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.