Abstract

Polarimetric SAR (PolSAR) imagery offers an enhanced capability to reveal the salient scattering properties of scene content. PolSAR-based target decomposition has been widely used to show different apparent scattering mechanisms for various target classes, empowering a direct yet powerful technique for SAR imagery analysis. Among those common targets, modeling the random volume scattering from vegetation is one of the most important. Generally, one models vegetation as a cloud of randomly oriented thin cylinders, mainly intended for twigs and branches. At high radar frequencies, PolSAR imagery shows a strong response from leaves in the vegetation canopy. In this letter, we derive the polarimetric scattering theory for general random volume scatterers, including both thin cylinders and thin disks as limiting cases for leaf response. Adding the proposed random thin disk model explains the observed scattering difference between deciduous forest and coniferous forest, which we then incorporate into a new model-based PolSAR target decomposition scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.