Abstract
Increasingly large populations of disk galaxies are now being observed at increasingly high redshifts, providing new constraints on our knowledge of how such galaxies evolve. Are these observations consistent with a cosmology in which structures form hierarchically? To probe this question, we employ SPH/N-body galaxy-scale simulations of late-type galaxies. We examine the evolution of these simulated disk galaxies from redshift 1 to 0, looking at the mass-size and luminosity-size relations, and the thickness parameter, defined as the ratio of scale height to scale length. The structural parameters of our simulated disks settle down quickly, and after redshift z = 1 the galaxies evolve to become only slightly flatter. Our simulated present-day galaxies are larger, more massive, less bright, and redder than at z = 1. The inside-out nature of the growth of our simulated galaxies reduces, and perhaps eliminates, expectations of evolution in the size-mass relation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.