Abstract

We study the evolution of circumstellar disks in 22 young (1 to 100 Myr) nearby (within 500 pc) associations over the entire mass spectrum using photometry covering from the optical to the mid-infrared. We compiled a catalog of 2340 spectroscopically-confirmed members of these nearby associations. We analyzed their spectral energy distributions and searched for excess related to the presence of protoplanetary disks in a homogeneous way. Sensitivity limits and spatial completeness were also considered. We derive disk fractions as probed by mid-infrared excess in these regions. The unprecedented size of our sample allows us to confirm the timescale of disk decay reported in the literature and to find new trends. The fraction of excess sources increases systematically if measured at longer wavelengths. Disk percentages derived using different wavelength ranges should therefore be compared with caution. The dust probed at 22-24 um evolves slower than that probed at shorter wavelengths (3.4-12 um). Assuming an exponential decay, we derive a timescale tau=4.2-5.8 Myr at 22-24 um for primordial disks, compared to 2-3 Myr at shorter wavelength (3.4-12 um). Primordial disks disappear around 10 Myr, matching in time a brief increase of the number of 'evolved' disks. The increase in timescale of excess decay at longer wavelength is compatible with inside-out disk clearing scenarios. The increased timescale of decay and larger dispersion in the distribution of disk fractions at 22-24 um suggest that the inner and outer zones evolve differently, the latter potentially following a variety of evolutionary paths. The drop of primordial disks and the coincident rise of evolved disks at 10 Myr are compatible with planet formation theories suggesting that the disappearance of the gas is immediately followed by the dynamical stirring of the disk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call