Abstract

We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. ProDiMo protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The Drift cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

Highlights

  • Element abundances are critical parameters to predict the atmospheric composition of exoplanets and to understand their formation and evolution, including potentially the emergence of life

  • We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models

  • We show that the resulting carbon-to oxygen ratio (C/O) is expected to be larger than the primordial value, and increase further with time, in particular between the water snowline (≈150 K) and the CO ice-line (≈20 K), where mostly water freezes out

Read more

Summary

Introduction

Element abundances are critical parameters to predict the atmospheric composition of exoplanets and to understand their formation and evolution, including potentially the emergence of life. Extrasolar gas giants are commonly assumed to have elemental abundances similar to those of their host stars. When considering the process of planet formation in a protoplanetary disk, which involves a segregation of gas, dust and ice phases, the assumption that the element mix of the host star must be the same as in the gas giants’ atmospheres becomes questionable. This has far-reaching consequences for the spectroscopic analysis of planetary spectra, including the search for bio-signatures [2,3,4]. The planetesimals are gravitationally attracted to each other, and collide to form larger parental bodies that later become planetary cores [7,8]

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call