Abstract

Given a planar graph $G=(V,E)$ and a rooted forest ${\FF}=(V_{\FF}, A_{\FF})$ with leaf set $V$, we wish to decide whether $G$ has a plane embedding $\GG$ satisfying the following condition: There are $|V_{\FF}|-|V|$ pairwise noncrossing Jordan curves in the plane one-to-one corresponding to the nonleaf vertices of ${\FF}$ such that for every nonleaf vertex $f$ of ${\FF}$, the interior of the curve $\JJ_f$ corresponding to $f$ contains all the leaf descendants of $f$ in ${\FF}$ but contains no other leaves of ${\FF}$. This problem arises from theoretical studies in geographic database systems. It is unknown whether this problem can be solved in polynomial time. This paper presents an almost linear-time algorithm for a nontrivial special case where the set of leaf descendants of each nonleaf vertex $f$ in ${\FF}$ induces a connected subgraph of $G$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.