Abstract
Disjunctive logic programs have become a powerful tool in knowledge representation and commonsense reasoning. This paper focuses on stable model semantics, currently the most widely acknowledged semantics for disjunctive logic programs. After presenting a new notion of unfounded sets for disjunctive logic programs, we provide two declarative characterizations of stable models in terms of unfounded sets. One shows that the set of stable models coincides with the family of unfounded-free models (i.e., a model is stable iff it contains no unfounded atoms). The other proves that stable models can be defined equivalently by a property of their false literals, as a model is stable iff the set of its false literals coincides with its greatest unfounded set. We then generalize the well-founded WPoperator to disjunctive logic programs, give a fixpoint semantics for disjunctive stable models and present an algorithm for computing the stable models of function-free programs. The algorithm's soundness and completeness are proved and some complexity issues are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.