Abstract

This paper introduces disjunctive decomposition for two-stage mixed 0-1 stochastic integer programs (SIPs) with random recourse. Disjunctive decomposition allows for cutting planes based on disjunctive programming to be generated for each scenario subproblem under a temporal decomposition setting of the SIP problem. A new class of valid inequalities for mixed 0-1 SIP with random recourse is presented. In particular, we derive valid inequalities that allow for scenario subproblems for SIP with random recourse but deterministic technology matrix and right-hand side vector to share cut coefficients. The valid inequalities are used to derive a disjunctive decomposition method whose derivation has been motivated by real-life stochastic server location problems with random recourse, which find many applications in operations research. Computational results with large-scale instances to demonstrate the potential of the method are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.