Abstract

Plant species are unique in their biological traits and biogeographical history, resulting in distinctive species distributions. Continuous and fragmented ranges of varying size and shape have captured the interest of biogeographers. Fragmented distribution into isolated populations is a common pattern of temperate and boreal species caused by contraction and expansion processes. Jack pine (Pinus banksiana Lamb.), a North American tree species, is among a multitude of species showing range distributions fragmented to isolated populations. Whether disjunct jack pine forests are remnants of larger Holocene populations or newly established populations due to long-distance transport remains unanswered. We used a retrospective approach based on soil macrocharcoal analysis to address the question of residency of a disjunct population in the boreal forest. The studied forest forms a disjunct population of a former regional population that has contracted since the mid-Holocene. Short to moderately long fire intervals occurred over the last 6000 years to maintain the species in a fire-prone, sandy environment assuring its regeneration and survival. Disjunct distributions similar to the studied pine population are often caused by regional extirpation of populations in which environmental contraction produces small ecological refugia where local conditions remain suitable through time for a species to complete its life cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.