Abstract
Streaming is emerging as an important programming model for multicores. Streaming provides an elegant way to express task decomposition and inter-task communication, while hiding laborious orchestration details such as load balancing, assignment (of stream computation to nodes) and computation/communication scheduling from the programmer. This paper develops a novel communication optimization for streaming applications based on the observation that streaming computations typically involve large, systematic data transfers between known communicating pairs of nodes over extended periods of time. From the above observation, we advocate a family of routing algorithms that expend some over overheads to compute disjoint paths for stream communication. Disjoint-path routing is an attractive design point because (a) the overheads of discovering disjoint paths are amortized over large periods of time and (b) the benefits of disjoint path routing are significant for bandwidth-sensitive streaming applications. We develop one instance of disjoint-path routing called tentacle routing - a backtracking, best-effort technique. On a 4×4 (6×6) system, tentacle routing results in 55% (84%) and 28% (41%) mean throughput improvement for high-network-contention streaming applications, and for all streaming applications, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.