Abstract

We have shown that when any finite number n, of line segments with total combined length less than one, have their centers placed randomly inside the unit interval , the probability of obtaining a mutually disjoint placement of the segments within , is given by the expression where , and denotes the length of the k-th segment, Lk . The result is established by a careful analysis of the geometry of the event, “all segments disjoint and contained within [0,1],” considered as a subset of the uniform probability space of n centers, each of which is in ; that is to say, the unit n-cube of . This event has an interesting geometric structure consisting of disjoint, congruent, (up to a mirror image) polytopes within the unit n-cube. It is shown these event polytopes fit together perfectly to form, except for a set of measure zero, a partition of an n-dimensional cube with common edge length , and hence an n-volume given by the formula. In the case of n = 3 segments, the polytopes form one of the known tetrahedral partitions of the cube as discussed, for example in [4]. In fact for all n > 0, the polytopes comprise a partition of the n-dimensional hypercube, and are therefore n-dimensional space filling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call