Abstract

The well-known Disjoint Paths problem is to decide if a graph contains k pairwise disjoint paths, each connecting a different terminal pair from a set of k distinct vertex pairs. We determine, with an exception of two cases, the complexity of the Disjoint Paths problem for H-free graphs. If k is fixed, we obtain the k-Disjoint Paths problem, which is known to be polynomial-time solvable on the class of all graphs for every k≥1. The latter does no longer hold if we need to connect vertices from terminal sets instead of terminal pairs. We completely classify the complexity of k-Disjoint Connected Subgraphs for H-free graphs, and give the same almost-complete classification for Disjoint Connected Subgraphs for H-free graphs as for Disjoint Paths. Moreover, we give exact algorithms for Disjoint Paths and Disjoint Connected Subgraphs on graphs with n vertices and m edges that have running times of O(2nn2k) and O(3nkm), respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call