Abstract
The well-known Disjoint Paths problem is to decide if a graph contains k pairwise disjoint paths, each connecting a different terminal pair from a set of k distinct vertex pairs. We determine, with an exception of two cases, the complexity of the Disjoint Paths problem for H-free graphs. If k is fixed, we obtain the k-Disjoint Paths problem, which is known to be polynomial-time solvable on the class of all graphs for every k≥1. The latter does no longer hold if we need to connect vertices from terminal sets instead of terminal pairs. We completely classify the complexity of k-Disjoint Connected Subgraphs for H-free graphs, and give the same almost-complete classification for Disjoint Connected Subgraphs for H-free graphs as for Disjoint Paths. Moreover, we give exact algorithms for Disjoint Paths and Disjoint Connected Subgraphs on graphs with n vertices and m edges that have running times of O(2nn2k) and O(3nkm), respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.