Abstract
A d-arc-dominated digraph is a digraph D of minimum out-degree d such that for every arc (x,y) of D, there exists a vertex u of D of out-degree d such that (u,x) and (u,y) are arcs of D. Henning and Yeo [Vertex disjoint cycles of different length in digraphs, SIAM J. Discrete Math. 26 (2012) 687–694] conjectured that a digraph with minimum out-degree at least four contains two vertex-disjoint cycles of different length. In this paper, we verify this conjecture for 4-arc-dominated digraphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.