Abstract
Using the disjoining pressure concept in a seminal paper, Derjaguin, Nerpin and Churaev demonstrated that isothermal liquid flow in a very thin film on the walls of a capillary tube enhances the rate of evaporation of moisture by several times. The objective of this review is to present the evolution of the use of Churaev's seminal research in the development of the Constrained Vapor Bubble (CVB) heat transfer system. In this non-isothermal “wickless heat pipe”, liquid and vapor flow results from gradients in the intermolecular force field, which depend on the disjoining pressure, capillarity and temperature. A Kelvin–Clapeyron model allowed the use of the disjoining pressure to be expanded to describe non-isothermal heat, mass and momentum transport processes. The intermolecular force field described by the convenient disjoining pressure model is the boundary condition for “suction” and stability at the leading edge of the evaporating curved flow field. As demonstrated by the non-isothermal results, applications that depend on the characteristics of the evaporating meniscus are legion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.