Abstract

Disintegrins, the snake venom-derived arginine-glycine-aspartic acid-containing peptides, have been demonstrated to inhibit angiogenesis through induction of endothelial cell apoptosis. However, it is not clear how a disintegrin causes endothelial apoptosis. In this study, we elucidated the action mechanism of disintegrin in causing endothelial apoptosis by using rhodostomin as a tool. We showed that cell detachment was observed at the early stage of rhodostomin treatment. It was initiated through the blockade by integrin ανβ3 and was accelerated by a mechanical stretch from neighboring cells. Both rhodostomin and poly(HEME) induced a higher percentage of cells at G2-M phase, the cleavage of β-catenin and poly(ADP-ribose) polymerase during apoptosis, indicating that cell detachment is a prerequisite for rhodostomin-induced apoptosis. Moreover, pp125 FAK phosphorylation and actin cytoskeleton were affected upon rhodostomin treatment. The activation of caspase-3 but not that of caspase-9 was detected after rhodostomin treatment. In addition, general caspase inhibitors inhibited the cleavage of β-catenin and poly(ADP-ribose) polymerase, and DNA fragmentation, whereas they did not prevent cell shape change or detachment. According to these results, we concluded that disintegrin-induced endothelial apoptosis is a complex process, not merely caused by a blockade of endothelial integrin ανβ3 but also by an accompanied shape change and mechanical stretches among cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.