Abstract
Periodate–chlorite oxidized bleached hardwood kraft pulp fibre samples with six levels of charge densities ranging from 0.5 to 1.8 mmol/g were gradually disintegrated to microfibrils using a high-shear homogenizer. The disintegration kinetics and mechanisms were studied by a flow fractionation method, and the properties of the resulting particles were determined using low shear viscosity and transmittance measurements. The particles formed during the disintegration were visualized with a charge-coupled device camera and by field-emission scanning electron microscopy. The result showed that cellulose fibres with a low charge density disintegrated at a low rate and produced ragged fibres and bunches of microfibrils via bursting of the fibre walls, whereas those with a higher charge density broke down at a high rate and microfibrils were formed through swelling and the creation of balloon structures. A carboxyl content of 1.2 mmol/g was found to be the threshold value for the efficient formation of high aspect ratio microfibrils and also for the change in the disintegration mechanism in the high-shear homogenizer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.