Abstract
In digital environments where substantial amounts of information are shared online, news headlines play essential roles in the selection and diffusion of news articles. Some news articles attract audience attention by showing exaggerated or misleading headlines. This study addresses the \textit{headline incongruity} problem, in which a news headline makes claims that are either unrelated or opposite to the contents of the corresponding article. We present \textit{BaitWatcher}, which is a lightweight web interface that guides readers in estimating the likelihood of incongruence in news articles before clicking on the headlines. BaitWatcher utilizes a hierarchical recurrent encoder that efficiently learns complex textual representations of a news headline and its associated body text. For training the model, we construct a million scale dataset of news articles, which we also release for broader research use. Based on the results of a focus group interview, we discuss the importance of developing an interpretable AI agent for the design of a better interface for mitigating the effects of online misinformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.