Abstract

AbstractOzonation of a real red‐meat‐processing wastewater was conducted in a semi‐batch reactor to explore the possibility of the water reuse. The experimental results revealed that ozone was very effective in disinfection of the red‐meat‐processing wastewater. After 8 min of ozonation with an applied ozone dose of 23.09 mg min−1 liter−1 of wastewater, 99% of aerobic bacteria, total coliforms and Escherichia coli were inactivated. Empirical models were developed to predict the microbial inactivation efficacy of ozone from the CT values for the real red‐meat‐processing wastewater. A correlation was also derived to estimate the CT values from the applied ozone dose and the ozone contact time. The results also revealed that under the ozonation condition for 99% inactivation of aerobic bacteria, total coliforms and E coli, the decrease in the chemical oxygen demand and the 5‐day biological oxygen demand of the wastewater were 10.7% and 23.6%, respectively. However, ozonation under this condition neither improved the light transmission nor reduced the total suspended solids (TSS) despite of the decolorization of the wastewater after ozonation. Copyright © 2005 Society of Chemical Industry

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call