Abstract

The reaction of 1-methyl-3-trimethylsilylimidazoline-2-thione with hexachlorodisilane proceeds toward substitution of four of the disilane Cl atoms during the formation of disilicon complexes with two neighboring hexacoordinate Si atoms. The N,S-bidentate methimazolide moieties adopt a buttressing role, thus forming paddlewheel-shaped complexes of the type ClSi(μ-mt)4 SiCl (mt=methimazolyl). Most interestingly, three isomers (i.e., with (ClN4 )SiSi(S4 Cl), (ClN3 S)SiSi(S3 NCl), and (ClN2 S2 )SiSi(S2 N2 Cl) skeletons as so-called (4,0), (3,1), and cis-(2,2) paddlewheels) were detected in solution by using (29) Si NMR spectroscopic analysis. Two of these isomers could be isolated as crystalline solids, thus allowing their molecular structures to be analyzed by using X-ray diffraction studies. In accord with time-dependent NMR spectroscopy, computational analyses proved the cis-(2,2) isomer with a (ClN2 S2 )SiSi(S2 N2 Cl) skeleton to be the most stable. The compounds presented herein are the first examples of crystallographically evidenced disilicon complexes with two SiSi-bonded octahedrally coordinated Si atoms and representatives of the still scarcely explored class of Si coordination compounds with sulfur donor atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.