Abstract
At low temperatures, hydrogen desorption is known to be the rate-limiting process in silicon germanium film growth via chemical vapor deposition. Since surface germanium lowers the hydrogen desorption barrier, Si(x)Ge((1-x)) film growth rate increases with the surface germanium fraction. At high temperatures, however, the molecular mechanisms determining the epitaxial growth rate are not well established despite much experimental work. We investigate these mechanisms in the context of disilane adsorption because disilane is an important precursor used in film growth. In particular, we want to understand the molecular steps that lead, in the high temperature regime, to a decrease in growth rate as the surface germanium increases. In addition, there is a need to consider the issue of whether disilane adsorbs via silicon-silicon bond dissociation or via silicon-hydrogen bond dissociation. It is usually assumed that disilane adsorption occurs via silicon-silicon bond dissociation, but in recent work we provided theoretical evidence that silicon-hydrogen bond dissociation is more important. In order to address these issues, we calculate the chemisorption barriers for disilane on silicon germanium using first-principles density functional theory methods. We use the calculated barriers to estimate film growth rates that are then critically compared to the experimental data. This enables us to establish a connection between the dependence of the film growth rate on the surface germanium content and the kinetics of the initial adsorption step. We show that the generally accepted mechanism where disilane chemisorbs via silicon-silicon bond dissociation is not consistent with the data for film growth kinetics. Silicon-hydrogen bond dissociation paths have to be included in order to give good agreement with the experimental data for high temperature film growth rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.