Abstract

Dishevelled (Dvl) proteins are central mediators of both canonical and non-canonical Wnt signaling. It is well known that, upon Wnt stimulation, Dvl becomes phosphorylated. However, how Wnt-induced phosphorylation of Dvl is regulated and its consequences are poorly understood. Here we found that Dvl proteins are overexpressed in colon cancer cells. In addition, we found that Wnt3a treatment rapidly induces hyperphosphorylation and stabilization of Dvl2 and Dvl3. The latter can be blocked by inhibition of Protein Kinase C (PKC)α, PKCδ, and PKCζ isoforms. We also found that Wnt3a-induced phosphorylation of Dvl3 by PKCζ is required to avoid Dvl3 degradation via proteasome. This demonstrated, to our knowledge for the first time, that hyperphosphorylation of Dvl by PKCζ results in Dvl stabilization. This is clear contrast with the consequences reported to date of CK1δ/ε-mediated Dvl phosphorylation upon Wnt treatment. Mapping the interaction domain between PKCζ and Dvl3 indicated that, although the Dvl-DIX domain is required to stabilize PKCζ-phosphorylated Dvl, it is not the region phosphorylated by this kinase. Our data show that the Dvl-DEP domain, required for specific interaction with PKCζ, is the site phosphorylated by this kinase, and also probably the Dvl-C terminus. Our findings suggest a model of positive regulation of PKCζ-mediated Dvl signaling activity, to produce a strong and sustained response to Wnt3a treatment by stabilizing Dvl protein levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.