Abstract
We have previously formulated and validated a mathematical model specifically designed to describe human respiratory behavior at altitude. In that model, we assumed equality of alveolar and end-pulmonary-capillary oxygen tensions. However, this equality may not hold true during rapid and prolonged changes to high altitudes producing severe hypoxia as can occur in aircraft cabin decompressions and in some respiratory diseases. We currently investigate this possibility by modifying our previous model to include the dynamics of oxygen exchange across the pulmonary capillary. The updated model was validated against limited experimental data on ventilation and gas tensions in various altitude-decompression scenarios. The updated model predicts that during rapid and sustained decompressions to high altitudes the disequilibrium of gas tensions between alveolar gas and capillary blood could be 10 Torr, or larger. Neglecting this effect underestimates the severity of a decompression and its potential to produce unconsciousness and subsequent brain damage. In light of these results, we also examined the effect of this disequilibrium on the diminished oxygen diffusion capacity that can occur in some respiratory diseases. We found that decreases in diffusion capacity which would have minimal effects at sea level produced significant disequilibrium of gas tensions and a large fall in hemoglobin oxygen saturation at a cabin altitude of 4000-8000 ft. As demonstrated, this new model could serve as an important tool to examine the important physiological consequences of decompression scenarios in aircraft and the pathophysiological situations in which the equilibrium of gas tensions along the pulmonary capillary are particularly critical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.