Abstract

Fire severity is a function of dynamic interactions between vegetation and burning conditions. To understand the factors that control it, accurate methods for estimating prefire vegetation structure and composition as well as fire propagation conditions are required. Here we analyzed the spatial variability of fire severity in a mixed-severity fire (3217 ha) that occurred in southeast Spain (Yeste, Albacete) from 27th July to 1th August 2017, burning mostly a pine woodland, including part of an earlier fire in 1994. Fire severity was estimated using three satellite-based indices derived from the Normalized Burn Ratio (NBR) using Sentinel 2 and Landsat 8 images from the dates before and immediately after fire. The field-based Composite Burn Index (CBI) was used for validation. Prefire vegetation conditions and fuel models were derived from LiDAR metrics and other vegetation data. Fire propagation conditions were estimated based on a fire progression map provided by the Forestry Services of Castilla-La Mancha. In addition, hourly fire weather and aligned (i.e., in the sense of the propagating fire-front) slope and wind speed were calculated for each burning period. Regression models using different spectral fire severity indices and their driving factors were obtained applying Boosted Regression Trees (BRTs). Fire severity was highly predicted by both burning conditions and prefire vegetation (mean adjusted R2 [Adj.R2]: 86% ± 0.04 and 68% ± 0.05 for training and validation sets, respectively). Alone, burning conditions explained more variance than LiDAR metrics and vegetation separately. The single variables that contributed most to the models were the rate of spread of the fire-front, biomass proxies (i.e., Leaf Area Index [LAI] and fraction of Photosynthetically Active Radiation [fPAR]) and understory vegetation (i.e., density of LiDAR points 1–2 m). Higher fire severity occurred in areas burning uphill, with a high rate of spread driven by high velocity winds and under high maximum temperature. Fire severity was high in wooded stands that were heterogeneous in height, composed by scattered and small Pinus halepensis trees, with high and homogeneous understory cover. In contrast, lower fire severity occurred in mature stands dominated by tall Pinus pinaster and Pinus nigra trees. There were strong interactions between vegetation, weather, fire-aligned topography and rate of spread. Because vegetation variables were important drivers of fire severity, even under extreme fire weather conditions, fuel management treatments to limit fire severity and, potentially, fire size should be implemented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call