Abstract
The essential oil of Cinnamomum burmannii (Nees and T. Nees) Blume is rich in monoterpenes and sesquiterpenes. The post-transcriptional regulatory mechanisms controlling the expression of terpenoid-related genes have not yet been clarified in C. burmannii. Here, we conducted a metabolomic analysis of the leaves of C. burmannii across four developmental stages using gas chromatography–mass spectrometry. We also identified miRNAs and their target genes involved in terpenoid biosynthesis using small RNA sequencing. A total of 135 differentially expressed metabolites were detected, including 65 terpenoids, 15 aldehydes, and 13 benzenes. A total of 876 miRNAs from 148 families were detected, among which 434 miRNAs were differentially expressed, including three known miRNAs and 431 novel miRNAs. Four miRNAs (gma-miR5368, novel_miR_377, novel_miR_111, and novel_miR_251) were predicted to regulate the expression of four differential expressed genes involved in the monoterpenoid and sesquiterpenoid synthesis. miRNAs families miR396, miR5185, and miR9408 were predicted to play diverse regulatory roles in monoterpenoid and sesquiterpenoid synthesis during the leaf development of C. burmannii. The results of our study shed new light on the roles of regulatory genes in terpenoid biosynthesis. Our findings also have implications for the further promotion of essential oil production using the leaves of C. burmannii.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.