Abstract

Abstract We present an analysis to disentangle the connection between physical quantities that characterize the conditions of ionized H ii regions – metallicity (Z), ionization parameter (U), and electron density (ne) – and the global stellar mass (M*) and specific star formation rate (sSFR = SFR/M*) of the host galaxies. We construct composite spectra of galaxies at 0.027 ≤ z ≤ 0.25 from Sloan Digital Sky Survey, separating the sample into bins of M* and sSFR, and estimate the nebular conditions from the emission-line flux ratios. Specially, metallicity is estimated from the direct method based on the faint auroral lines [O iii]λ4363 and [O ii]λλ7320,7330. The derived metallicities cover a range of 12 + log O/H ∼ 7.6–8.9. It is found that the three nebular parameters, Z, U, and ne, are tightly correlated with the location in the M*–sSFR plane. With simple physically motivated ansätze, we derive scaling relations between these physical quantities by performing multiregression analysis. In particular, we find that U is primarily controlled by sSFR, as U∝sSFR0.43, but also depends significantly on both Z and ne. The derived partial dependence of U∝Z−0.36 is weaker than the apparent correlation (U∝Z−1.52). The partial dependence of U on ne is found to be $U \propto n_\mathrm{e}^{-0.29}$. The scaling relations we derived are in agreement with predictions from theoretical models and observations of each aspect of the link between these quantities. Our results provide a useful set of equations to predict the nebular conditions and emission-line fluxes of galaxies in semi-analytic models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.