Abstract

An understanding of how the degree of phylogenetic relatedness influences the ecological similarity among species is crucial to inferring the mechanisms governing the assembly of communities. We evaluated the relative importance of spider phylogenetic relationships and ecological niche (plant morphological variables) to the variation in spider body size and shape by comparing spiders at different scales: (i) between bromeliads and dicot plants (i.e., habitat scale) and (ii) among bromeliads with distinct architectural features (i.e., microhabitat scale). We partitioned the interspecific variation in body size and shape into phylogenetic (that express trait values as expected by phylogenetic relationships among species) and ecological components (that express trait values independent of phylogenetic relationships). At the habitat scale, bromeliad spiders were larger and flatter than spiders associated with the surrounding dicots. At this scale, plant morphology sorted out close related spiders. Our results showed that spider flatness is phylogenetically clustered at the habitat scale, whereas it is phylogenetically overdispersed at the microhabitat scale, although phylogenic signal is present in both scales. Taken together, these results suggest that whereas at the habitat scale selective colonization affect spider body size and shape, at fine scales both selective colonization and adaptive evolution determine spider body shape. By partitioning the phylogenetic and ecological components of phenotypic variation, we were able to disentangle the evolutionary history of distinct spider traits and show that plant architecture plays a role in the evolution of spider body size and shape. We also discussed the relevance in considering multiple scales when studying phylogenetic community structure.

Highlights

  • A non-random distribution of animal body sizes along resource gradients results of the interplay between environmental and behavioral traits

  • Without controlling for phylogenetic relationships among species, we found that bromeliad-living spiders were on average 50% larger than dicot-living spiders

  • Partitioning out the variation in body size among bromeliad-living spiders, we found that the phylogenetic component is negatively related to leaf length and the number of leaves (R2adj = 0.785, P,0.001; Table 3), whereas the values of the ecological and niche conservatism components of spider body size were not related to microhabitat variables (Table 3)

Read more

Summary

Introduction

A non-random distribution of animal body sizes along resource gradients results of the interplay between environmental and behavioral traits. Life-history theory predicts that traits maximizing fitness in a particular selective environment are maintained along evolutionary history of an organism [1]. The morphological characteristics (e.g., smaller species) of species that are evolutionary conserved will favor the selective colonization of vegetation habitats habitat structure [2]. Most studies considering the relationship between morphology and ecology fail to take phylogeny into account. Since closely related species tend to share similar morphology and ecological niches, not taking phylogeny into account explicitly treats them as independent observations [3], obscuring the variation among species due to common ancestry. The integration of phylogeny into community ecology provides a historical framework within which to understand the contributions of ecological and evolutionary processes in dictating the contemporary distributions of species [4]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.