Abstract

One novel cobalt-coordinated graphitic carbon nitride-type polymer (Co-g-CN) integrating the advantages of both molecular catalytic efficiency and nano semiconductor stability was fabricated, which served as homogeneous photocatalyst exhibiting superior hydrogen evolution efficiency (ca. ∼ 12.3 mmol g–1 h–1) under visible light irradiation in the absence of noble metal cocatalyst. Various techniques including laser photolysis and electron paramagnetic resonance were combined to disentangle the underlying photocatalytic mechanism, which suggested that, unlike nano semiconducting catalysis, the multivalent Co metal center of the polymer mediated the electron transfer process, directly got involved in the proton reduction by sequentially exchanging electrons in a way similar to those molecular coordinated catalysts. These findings provide useful insight into the photocatalytic mechanism of the metal center-mediated water splitting process, and the employment of an economical non-noble metal-coordinated polym...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.