Abstract
Using the Community Earth System Model (CESM)-Large Ensemble (LE) surface air temperature (SAT) data, we investigate the multidecadal changes in SAT variability over Central Indian landmass, particularly the Indo-Gangetic (IG) river basin. This region comes under the active influence of the Indian summer monsoon, and during the summer monsoon months (JJA), we observe an amplified cooling (< − 3 °C) trend (1961–2000) in SAT. This SAT trend is considered as a superposition of external forcings and natural climatic variability. The forced response is computed by averaging the trend in 35 ensemble members, which displays a moderate cooling trend due to aerosol-, ozone-, and volcano-only forcings. But the internal variability introduces a wide range of uncertainties in SAT, with majority of the members display a strong cooling trend in the Central Indian region. During the entire period, natural climatic variability dominates over the forced response, which strongly overrides the greenhouse gas (GHG) warming. Here, we separate out the influence of global climate variability on regional climate variability and identify the specific internal variability which is responsible for the multidecadal cooling trend in the analyzed region. Furthermore, we investigate the specific physical mechanism driving the cooling trend and analyze the role of Atlantic multidecadal oscillation (AMO) in its negative phase. The covariability is − 0.74, i.e., AMO accounts for ~ 55% of total variance in the multidecadal variability. In the negative phase of AMO, strong signals of Rossby waves emanating from North Atlantic Ocean propagate across the Eurasian continent, and in the latter half of the twentieth century, the effect of this cold sea surface temperature (SST) anomaly is felt in the Central Indian landmass (particularly over IG river basin) through teleconnection. This study will increase the predictability of multidecadal variability in SAT during summer monsoon season over the Central Indian region with AMO as a strong driving component.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.