Abstract

The respiratory condition COVID-19 arises in a human host upon the infection with SARS-CoV-2, a coronavirus that was first acknowledged in Wuhan, China, at the end of December 2019 after its outbreak of viral pneumonia. The full-blown COVID-19 can lead, in susceptible individuals, to premature death because of the massive viral proliferation, hypoxia, misdirected host immunoresponse, microthrombosis, and drug toxicities. Alike other coronaviruses, SARS-CoV-2 has a neuroinvasive potential, which may be associated with early neurological symptoms. In the past, the nervous tissue of patients infected with other coronaviruses was shown to be heavily infiltrated. Patients with SARS-CoV-2 commonly report dysosmia, which has been related to the viral access in the olfactory bulb. However, this early symptom may reflect the nasal proliferation that should not be confused with the viral access in the central nervous system of the host, which can instead be allowed by means of other routes for spreading in most of the neuroanatomical districts. Axonal, trans-synaptic, perineural, blood, lymphatic, or Trojan routes can gain the virus multiples accesses from peripheral neuronal networks, thus ultimately invading the brain and brainstem. The death upon respiratory failure may be also associated with the local inflammation- and thrombi-derived damages to the respiratory reflexes in both the lung neuronal network and brainstem center. Beyond the infection-associated neurological symptoms, long-term neuropsychiatric consequences that could occur months after the host recovery are not to be excluded. While our article does not attempt to fully comprehend all accesses for host neuroinvasion, we aim at stimulating researchers and clinicians to fully consider the neuroinvasive potential of SARS-CoV-2, which is likely to affect the peripheral nervous system targets first, such as the enteric and pulmonary nervous networks. This acknowledgment may shed some light on the disease understanding further guiding public health preventive efforts and medical therapies to fight the pandemic that directly or indirectly affects healthy isolated individuals, quarantined subjects, sick hospitalized, and healthcare workers.

Highlights

  • Specialty section: This article was submitted to Clinical and Translational Physiology, a section of the journal Frontiers in Physiology

  • The respiratory condition COVID-19 arises in a human host upon the infection with SARS-CoV-2, a coronavirus that was first acknowledged in Wuhan, China, at the end of December 2019 after its outbreak of viral pneumonia

  • SARS-CoV-2 shares similar infection pathways compared to its predecessors and the infection mechanisms previously found for other coronaviruses may be applicable for this new strain

Read more

Summary

THE SNIFFING OUT OF CORONAVIRUSES

Named after their crown-like spikes, coronaviruses are large non-segmented single-stranded positive-sense enveloped RNA viruses that may spill out from animals to infect humans and cause respiratory diseases. On March 21st, the British Association of Otorhinolaryngology released a statement that dysosmia could be associated with SARS-CoV-2 contagion (Hopkins and Kumar, 2020), highlighting the possibility of the nasal-nervous route as alternative access of the virus (Baig et al, 2020). It is urgent to discuss whether SARS-CoV-2 can gain access to the central nervous system through a nasal-nervous pathway or other routes and if the fatal respiratory failure may be associated with a neuronal injury in critical brain areas of the host

THE SNIFFING PROBLEMS
Nasal Proliferation
Damage to Pulmonary Nerve Fibers
Enteric Nervous System Invasion
Olfactory Bulb Infiltration
Brain Infiltration
Brainstem Infiltration
Findings
DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call