Abstract

AbstractAimThe exceptional turnover in biota with elevation and number of species coexisting at any elevation makes tropical mountains hotspots of biodiversity. However, understanding the historical processes through which species arising in geographical isolation (i.e. allopatry) assemble along the same mountain slope (i.e. sympatry) remains a major challenge. Multiple models have been proposed including (1) the sorting of already elevationally divergent species, (2) the displacement of elevation upon secondary contact, potentially followed by convergence, or (3) elevational conservatism, in which ancestral elevational ranges are retained. However, the relative contribution of these processes to generating patterns of elevational overlap and turnover is unknown.LocationTropical mountains of Central‐ and South‐America.Time PeriodThe last 12 myr.Major Taxa StudiedBirds.MethodsWe collate a dataset of 165 avian sister pairs containing estimates of phylogenetic age, geographical and regional elevational range overlap. We develop a framework based on continuous‐time Markov models to infer the relative frequency of different historical pathways in explaining present‐day overlap and turnover of sympatric species along elevational gradients.ResultsWe show that turnover of closely related bird species across elevation can predominantly be explained by displacement of elevation ranges upon contact (81%) rather than elevational divergence in allopatry (19%). In contrast, overlap along elevation gradients is primarily (88%) explained by conservatism of elevational ranges rather than displacement followed by elevational expansion (12%).Main ConclusionsBird communities across elevation gradients are assembled through a mix of processes, including the sorting, displacement and conservatism of species elevation ranges. The dominant role of conservatism in explaining co‐occurrence of species on mountain slopes rejects more complex scenarios requiring displacement followed by expansion. The ability of closely related species to coexist without elevational divergence provides a direct and faster pathway to sympatry and helps explain the exceptional species richness of tropical mountains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call