Abstract

Graphene nanorings are promising model structures to realize persistent ring currents and Aharonov–Bohm effect at the single molecular level. To investigate such intriguing effects, precise molecular characterization is crucial. Here, we combine low-temperature scanning tunneling imaging and spectroscopy with CO functionalized tips and algorithmic data analysis to investigate the electronic structure of the molecular cycloarene C108 (graphene nanoring) adsorbed on a Au(111) surface. We demonstrate that CO functionalized tips enhance the visibility of molecular resonances, both in differential conductance spectra and in real-space topographic images. Comparing our experimental data with ab-initio density functional theory reveals a remarkably precise agreement of the molecular orbitals and enables us to disentangle close-lying molecular states only separated by 50 meV at an energy of 2 eV below the Fermi level. We propose this combination of techniques as a promising new route for a precise electronic characterization of complex molecules and other physical properties which have electronic resonances in the tip-sample junction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.