Abstract

Summary 1. Understanding proximate determinants of predation rates is a central question in ecology. Studies often use functional response (density dependent) or allometric (mass dependent) models but approaches that consider multiple factors are critical to capture the complexity in predator–prey interactions. We present a novel comprehensive approach to understand predation rates based on field data obtained from a vertebrate predator. 2. Estimates of food consumption and prey abundance were obtained from 21 semi‐natural populations of the lizard Zootoca vivipara. We identified the most parsimonious feeding rate function exploring allometric, simple functional response and allometric functional response models. Each group included effects of sex and weather conditions. 3. Allometric models reveal the importance of predator mass and sex: larger females have the highest natural feeding rates. Functional response models show that the effect of prey density is best represented by a Holling type II response model with a mass, sex and weather dependent attack rate and a constant handling time. However, the best functional response model only received moderate support compared to simpler allometric models based only on predator mass and sex. 4. Despite this limited effect of prey densities on feeding rates, we detected a significant negative relationship between an index of preferred prey biomass and lizard density. 5. Functional response models that ignore individual variation are likely to misrepresent trophic interactions. However, simpler models based on individual traits may be best supported by some data than complex allometric functional responses. These results illustrate the importance of considering individual, population and environmental effects while also exploring simple models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.