Abstract
This study explored the coupling relationships between denitrifiers and N-transformation using multi-level (DNA, RNA and enzyme) and multi-aspect (abundance, diversity, structure, key community, network pattern, and functional module) analyses during cattle-manure (CM) and biochar (CMB) composting. Amino sugar-N (ASN, 0.914) and hydrolysable unknown-N (-0.724) were main organic-N components mediating NH4+-N in CM and CMB, respectively. Biochar lowered nirK, nirS, and nosZ genes copies, up-regulated nir gene transcripts, and inhibited nitrite reductase (NIR) activity. For nirK-denitrifiers, Luteimonas was predominant taxa influencing NO2−-N and amino acid-N (AAN). Unclassified_k_norank_d_Bacteria and unclassified_p_Proteobacteria regulated NO3−-N and ASN, respectively. These three genera played crucial roles in mediating NIR activity and nosZ/nirK. For nirS-denitrifiers, Paracoccus and Pseudomonas mediated NH4+-N and AAN, respectively, and they were vital genera regulating NO3−-N, ASN and NIR activity. Furthermore, nirK-denitrifiers was major contributor to denitrification. Overall, functional denitrifiers might simultaneously participate in multiple N-transformation processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.