Abstract

I examine the structure of random choice resulting from random expected utility maximization and a tie-breaking rule. I provide a partial identification result, characterizing the set of random expected utility models that could have generated the observed choice frequencies. I then consider a particular class of random choice rules for which it is possible to constructively identify the consistent random utility model that produces indifference the least. These random choice rules are characterized by breaking ties in favor of strict convex combinations. Towards proving these results, I introduce and axiomatize the notion of a choice capacity, representing the frequency of choice by strict maximization. Choice capacities, while not necessarily observable themselves, provide the technical machinery to translate arbitrary random expected utility models into choice behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.